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1

Let f be a complex function, differentiable throughout an open set S of
complex numbers. Then f has derivatives of all orders throughout Sand
can be expanded in a power series throughout every disk lying in S. These
facts have been established by means of Cauchy's integral formula and a
natural question has arisen, whether there exists another method of proof,
not employing that tool, a formula which is not directly related to the
concept of differentiability and whose validity for differentiable functions
can be viewed as a fortunate incidence.

In fact, thanks to the work of E. Connell, R. L. Plunkett, P. Porcelli,
A. H. Read, and G. T. Whyburn, such a new method of proof [18] based
on Topological Analysis has been developed. However, it is a method
which deviates from the mainstream procedures of Classical Analysis.

2

The following is a very natural approach to the expansion of complex
differentiable functions. Suppose 0 ~ R' < R" < 00, and let f be a complex
function, differentiable in the annulus R' < Izl < R". We would like to prove
that f has, throughout that annulus, an expansion

00 00

f(z) = L a_k z - k + L ak zk.
k~ I k~O

(1)
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Choose an r, R' < r < R", and consider the function /(re ifJ ), - 00 < 8 < 00,

of period 2n. This function, being everywhere differentiable, can, by Dini's
test [19, p. 52], be expanded everywhere in a Fourier series:

II

/(re ifJ ) = lim L ck(r) eikfJ,
n-i> 00 k= -n

where

(2)

k = 0, ± 1, ±2, .... (3)

If z = re ifJ, 8 real, then from (2),

II

/(z) = lim L ck(r) r-kz k.
n-l> 00 k=-n

(4)

If one could show, for each fixed k, that, for R' < r < R", ck(r) r- k is a
constant ak> independent of r, then (4) would yield

II

/(z) = lim L akzk
n - 00 k = -n

which is, essentially, (1). Using the polar form of Cauchy-Riemann
equations, one can show, in case 1'(z) is known to be continuous in the
annulus R' < Izl < R", by differentiating under the integral sign, that
(djdr)[ck(r) r- k] =0 throughout (R', R"), for k=O, ± 1, ±2, ..., and hence,
for each such k, ck(r) r- k is indeed a constant in (R', R"). This procedure
was carried out by P. R. Beesack [1], and can also be done if1'(z) is only
known to be bounded in the annulus and, more generally, if it is merely
given that there is a real function M(8), summable over (0, 2n), such that,
for every r E (R', R"), 8 E (0, 2n), one has 11'(reifJ)1 ~ M(8).

3

Our main goal is thus to prove that each ck(r) r- k is independent of r,
without making any assumption on l' beyond its existence in the annulus
R' < Izi < R". Two features of our proof are: (IX) In contrast to the proof of
(1) based on Cauchy's integral formula, which is a very "complex analytic"
proof, starting a deep schism between much of complex analysis and real
analysis, our proof is essentially a "real" one, keeping an intimate rela
tionship between real and complex analysis. Such a close intimacy is of
great value in our era of extreme specialization, threatening the unity of
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mathematics. Also, our method, unlike the use of topological analysis,
belongs in spirit to the mainstream of classical analysis. (P) Our main tool
is the Generalized Riemann Integral. It was introduced in the beginning of
the century by O. Perron and A. Denjoy, but more recently was given an
equivalent definition which is merely a slight variation of the definition of
the Riemann integral, making it a very elementary concept. At the same
time, it is more powerful than the Lebesgue integral which it includes
(together with other integrals) as a special case. There is every reason to
make the generalized Riemann integral the standard integral of the
working analyst, and textbooks which are essentially doing so are starting
to appear: [3] ("The Gauge Integral"), [11] ("The P-Integral"). It is
hoped that the present paper will contribute to accelerating this trend.

4

To keep our work self-contained, we start by defining the (one-dimen
sional) generalized Riemann integral and stating some of its fundamental
properties. This definition goes back to J. Kurzweil and independently to
R. Henstock who has studied this concept extensively. An elementary
monograph on the subject is [12] and a rapid survey can be obtained from
[2,9] where the generalized Riemann integral is related to the "Dominated
Integral" and the "Simple Integral" introduced and studied by the author
and his co-workers [4, 5, 15, 16, 17,8, 13, 14].

DEFINITION 1. Let - 00 < a < b < 00 and let f be a complex function
defined on [a, b]. Suppose there is a complex number I having the
property: for every 1:>0 there is a positive function b.(x) defined on [a, b]
such that if

a=xo<x\ < ... <xn=b,

for k = 1, 2, ..., n,

then

Then this I is unique and is called the generalized Riemann integral offon
[a, b], and f is said to be generalized Riemann integrable on [a, b].
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Here are some fundamental properties of this integral.

(I)

r[lXf(X)+Pg(x)]dx=1Xrf(x)dx+Prg(x)dx
a a a

assuming the right-hand side exists, where IX, Pare any complex constants,
and the integrals are generalized Riemann.

(II) If - 00 < a < b < 00, iffis a complex function defined on [a, b],
and if J~f(x) dx exists as a (finite) Riemann, Lebesgue, or improper
Riemann integral,l then it exists also as a generalized Riemann integral,
and with the same value.

(III) Iff (as a complex function of a real variable) is differentiable at
each point of [a, b] (- 00 < a < b < 00), thenrf'(x)dx=f(b)-f(a) (5)

a

(a generalized Riemann integral). This theorem is false if the integral is
taken as Riemann, Lebesgue, or improper Riemann integral.

5

Definition 1 has an obvious extension to complex functions on closed
n-dimensional intervals, n = 2,3, .... For our purposes, we need, however, a
variant essentially given in [10], namely,

DEFINITION 2. Let - 00 < a < b < 00, - 00 < c < d < 00, and let f be a
complex function defined on the rectangle

s= {(x, y): a~x~b, c~ y~d}

in (real) Euclidean 2-space. Suppose there is a complex number I having
the property: for every e > 0 there is a positive function c5(P) == c5.(P)
defined on S such that if a finite set (J of disjoint open subrectangles of S
is given, each one, s, containing in its closure, S, a point P(s) and of the
form

where
s= {(x, y): as~x~bs, cs~ y~ds},

bs - as < c5(P(s)), ds - Cs < c5(P(s)),

(ds - cs)/(bs - as) = (d - c)/(b - a),

(6)

(7)

(8)

1 The latter, with any finite number of "singular points," i.e., as in [7], Definition 91, p. 323
(for a complex function).
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so that

U$=8,
SEU

then

Then this / is unique (see below) and we denote it
/'..

If f(x, y) dx dy.
a~x~b

c~ y~d

121

(9)

For the convenience of the reader we supply here a proof of the (known)
uniqueness claimed in the last sentence. We first prove the following
(known) result: Suppose b(P) is a positive function defined on 8. Then (*)
there is a finite set (J of disjoint open subrectangles of 8, each one, s, con
taining in its closure, $, a point P(s) and of the form (6), where (7), (8),
so that (9). Indeed, assume (*) is false. Using a horizontal and a vertical
line bisecting the sides of 8, break 8 into four closed rectangles with
interiors mutually disjoint. For at least one of the four, say 8 1 , (*) with 8
replaced by 8 1 , is false. Now break 8 1 similarly and arrive at a closed
rectangle 8 2 for which (*), with 8 replaced by 8 2 , is false, and so continue.
Let P* be the point common to all 8 k • Let n be a positive integer with

(b - a)/2n < b(P*), (d - c)/2n < b(P*).

Then (*), with 8 replaced by 8 n , is true, for one can take as (J the singleton
consisting of the interior of 8 n with which we associate the point P*. We
have thus arrived at a contradiction with the definition of 8 n •

If both /1 and /2 (#/1) enjoy the property of / in Definition 2, with
corresponding functions b~I)(p), b~2)(p), then set

b(P) == min(b!Ji_hl/2(P), bW-hl/2(P)),

Using (*), choose (J and points P(s) as in (*). Then

1/1- s~u f(P(s))(b s - as)(ds - Cs)1 < 1/1 - /21/2,

1/2 - I/(P(s))(bs- as)(ds - Cs)1 < 1/1 - /21/2

and hence
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6

FUNDAMENTAL LEMMA. Let 0 < R 1 < R < 00 and let f(z) be a complex
function, differentiable at each point of the annulus

Then

If 1'(rei'P)drdcp=f
21t

e-i'P[f(Rei'P)-f(Rlei'P)] dcp, (10)
RI ~r~ R 0
o~ cp ~ 27t

(The (Riemann) integrals on the right in (10) and (11) clearly exist.)

We postpone the proof to Sections 8 and 10. We recall here the

POLAR ANALOG OF CAUCHY-RIEMANN EQUATIONS. Let f be a complex
function of a complex variable, differentiable at Zo = roei'Po(ro, CPo real). Then
(r, cp considered real variables) of(rei'P)/or and of(rei'P)/ocp exist at (ro, CPo)
with values:

of(roei'PO)/or = ei'Poj'(zo),

of(roei'Po)/ocp = izo1'(zo) = iro of(roei'Po)/or.

7

(12)

We are now in a position to carry out our aim, namely, to re-prove the
classical

THEOREM. Let 0 ~ R' < R" < 00 and let f(z) be a complex function,
differentiable in the annulus R' < Izi < R". Then there are complex numbers

such that, throughout that annulus,

00 00

f(z) = L ak zk + L a_k z - k
k~O k~1

(13)
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Proof of the Theorem. Let R' < r < R" and set

123

k = 0, ± 1, ± 2, .... (14 )

Then, (2), for every real e,
n

f(re ifl )= lim L: ck(r)e ikfl.
n -+ 00 k = -n

Let

k = 0, ± 1, ±2, ..., (15 )

so that, for every real e,
n

f(re ifl ) = lim L Yk(r)(reiflt
n -+ 00 k = -n

We shall prove that, for every integer k,

Yk(r) is constant, say ab on (R', R").

It would then follow that, if R' < Izl < R", then

n

f(z) = lim L ak zk.
n- 00 k=-n

(16)

Also, Lr~o akzk would converge for Izi < R". Indeed, for such z, choose

max(lzl, R') < r < R".

Then, by (16), (15), and (14), for every integer k,

lakzkl = ICk(r)1 . (Izllr)k ~ [max {If(rei''')I: °~ qJ ~ 2n}]( Izllr)k

and, hence, Lk"=o akzk converges. Thus, throughout the annulus
R' < Izi < R", (13).

Let k be an integer. We shall prove (16). By (15) and (14), for
R' <r<R",

Hence, it is enough to prove (16) with k= 1. Observe that Yl(r) is
continuous in (R', R").
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If R' < r < R", then for every real qJ,

- ie -i", f(re i"') = o(e~i'" f(rei"'))/oqJ - e -i", of(rei"')/oqJ

and hence, by (14), (5), and (12),

where the last two integrals are generalized Riemann.
Let R' < R1 < R < R". Then, by (15) and (17),

(17)

Suppose we could invert the order of integrations on the right-hand side,
the inner one (dr) being generalized Riemann, namely,

Then we would obtain throughout (R', R"),

namely, y~(R) = 0 and, so, YI is constant on (R', R").
Now (18) can be written, by (15) and (14),

which is true, by the Fundamental Lemma.

(18)

COROLLARY 1. Let 0 < R < 00 and let f(z) be a complex function, dif
ferentiable in the disk Izl < R. Then there are complex numbers ao, ai' ...
such that, throughout that disk,

00

f(z) = L ak zk.
k~O

(19)

Proof Let 0 < r :::;; R/2. By the proof of the preceding Theorem, with
R' = 0, R" = R, we have (13) whenever 0 < Izl < R, where

k = 0, ± 1, ±2, ....
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Let k be a positive integer. Then

125

Letting r-+O+, we conclude a_k=O. Hence (19) whenever 0< Izi <R. By
continuity off and of the power series at 0, we have (19) also for z=o.

COROLLARY 2. Let f be a complex function and c a complex number.
(a) Let 0 ~ R' < R" < 00 and let f be differentiable in the annulus
R' < Iz-cl <R". Then there are complex numbers ..., a_2' a_I' ao, ai' a2, ..·
such that, throughout that annulus,

co co

f(z)= L ak(z-c)k+ L a_k(z-c)-k.
k~O k~1

(b) Let 0 < R < 00 and let f be differentiable in the disk Iz - cl < R.
Then there are complex numbers ao, aI' ... such that, throughout that disk,

co

f(z) = L ak(z - C)k.
k~O

8

Proof of (10). We may even assume O~R,<R<oo. Let s>O. We
show: there is a positive function c5,(P) defined on

8 = {(r, <p): R , ~ r ~ R, 0 ~ <p ~ 2n}

such that if a finite set (1 of disjoint open subrectangles of 8 is given, each
one, s, containing in its closure, 5, a point P(s) = (r(s), <p(s)) and of the
form

where

so that

bs - as < c5,(P(s)), ds - Cs< c5,(P(s)),

(ds - cs)/(bs - as) = 2n/(R - Rd,

U 5=8,
SEG

(20)

(21)
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It' e-i'P[f(Re;'P) - f(R l ei'P)] dcp - L f'(r(s) ei'P(sl)(bs- as)(ds- Cs)! < E.
o sEU

(22)

Set

E. = E/{8n[(2n + 1) R-R1 ]}.

Given P = (r, cp) E S, let

where 11 > 0 is such that

(23)

(24)

(26)

If" e-i'P[f(Rei'P) - f(R 1ei'P)] dcp

-}tl e-i'PJ[f(Rei'PJ) - f(R 1ei'PJ)](cpj - CPj~ III < E/2 (25)

whenever 0 = CPo < CPl < ... < CPn = 2n,

max {cpj - CPj ~ 1 : 1~ j ~ n} < 11

and, for every' > 0, 11,(r, cp) > 0 is such that

I[f(z) - f(rei'P)](z - rei'P)-1 - f'(rei'P)! <,
whenever 0 < Iz - rei'Pl < 11,(r, cp).

With this definition of c5 e(P), let (1 and points P(s) be as above in this
proof. We prove (22).

Let the horizontal sides of the elements of (1, extended, be the lines

cP = CPj' j = 0, 1, 2, ..., n,

where

Let 1~ j ~ n and consider the rectangle

Let its vertical partitions, inherited from (1, be segments of the lines

r - r(j) r - r(j)- 1, ... , - mj'
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where

Let 1~ k ~ mj' There is a unique S= Sjk E (J of the form

{(r, cp): rl!~ 1 < r < rl!l, cp' < cp < cp"}

intersecting Pj' and, clearly, by (20), (24),

CPj- CPj-1 ~ cP" - cP' < '7.

127

(27)

Consider the corresponding point P(s) = (r(s), cp(s)). By (20), (24), for p =
k - 1, k, we have

Ir}jl eiq>j - r(s) eiq>(sll = I(r}jl- r(s)) eiq>j + r(s)(eiq>j - eiq>(sl)1

~ Ir}jl- r(s)1 + r(s)1 CPj - cp(s)1

~ rl!) - rl!~ 1 + R(cp" - cp')

< (1 + R) (5.(P(s)) ~ '7'l(r(s), cp(s))

and hence, by (26), (21), and (23), we have

If(r}/) eiq>j) - f(r(s) eiq>(sl) - f'(r(s) eiq>(sl)[r}/leiq>j - r(s) eiq>(sl] I

~ ellr}/leiq>j - r(s) eiq>(sll ~ el [rl!l - rl!~ 1 + R(cP" - cp')]

= el [1 +R(cp" - cp')(r}/) - rl!~ d -I ](rl!l - rl!~ d

=el[1 +2nR(R-Rd-I](rl!l-rl!~d

= e(rl!) - rl!~ d/[8n(R - Rdl

Therefore

If(rl!) eiq>j) - f(rl!~ 1 eiq>j) - f'(r(s) eiq>(sl)(rl!) - rl!~ d eiq>jl

~ e(rl!) - rl!~ d/[4n(R - Rdl

Hence

/e-iq>j[f(Reiq>j) - f(R Ieiq>j)] - k~1 f'(r(sjd eiq>(Sjk))(rl!) - rl!~ dl ~ el(4n),

Ijtl e-iq>j[f(Reiq>j) - f(R Ieiq>j)](epj - epj- d

- jtl k~ 1 f'(r(Sjk) eiq>(Sjk))(rl!l - rl!~ d(CPj - CPj- 1)1

n

~ L e(4n)-I(cpj-epj_d=eI2.
1=1
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By (25) and (27),

!(' e -''I'[f(Re''I') - f(R tei'l')] dq>

- itt e-i'l'J[f(Re''I'i) - f(R 1e''I'i)J(qJi - q>i-I)! < e/2.

Therefore

If" e-i'l'[f(Rei'l')-f(Rtei'l')] dqJ- L f'(r(s)ei'l'(S)(bs-as)(ds-cs)!
o SED'

= If;" e-i<i'[f(Rei'l')- f(R1ei<i')) dq>

n m) !- L L f'(r(sik)ei'l'(sJd)(rV)-rV~I)(qJi-q>i_d <e.
i= 1 k= 1

9

To prove (11), we need two simple lemmas.

LEMMA 1. Let C be a compact (nonempty) set of complex numbers and
let g be a complex function, continuous on C (in the sense that if
z, Zt, Z2' ... E C and Zn -+ z, then f(zn) -? [(z». Let 1'/ > O. There is p >0 such
that if

k = 1,2, ..., n,

then for every r > 0 such that the circle 1zl = r lies in C, we have

I
2" n Id~· .

m= f g(re''I')dqJ- L g(re'Olk)(q>k-q>k_d <t].
o k=t

Proof of Lemma 1. Let L1 > 0 be such that

(28)

whenever ZI' Z2 E C, IZ2 - ztl < J

and let

p=J/[1 +max{lzl:ZEC}].
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Suppose (28) and that the circle Izi =r, r>O, lies in C. Then
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I
n f"'k

m = k~l "'k-I Re g(re
i
"') dqJ - {Re g(rei~k) }(qJk - qJk- d

+i[(k_11m g(rei"')dqJ- {1m g(rei~k)}(qJk-qJk-dJI

= Ikt {Re[g(re iPk )- g(rei~k)] + i Im[g(re iYk ) - g(rei~k)] }(qJk - qJk- dl
n

~ L {I g(re iPk ) - g(rei~k)1 +Ig(re iYk )- g(rei~k)1 }(qJk - qJk - d,
k~l

where, for k = 1, 2, ... , n,

For k= 1, 2, ... ,

and, similarly,

Hence

n

m< L rJ(2n)-1(qJk-qJk_d=rJ·
k=l

LEMMA 2. There is A, °< A~ n, and a complex function B(z) such that,
whenever u, v are complex numbers satisfying °< lui < A, 0 < Ivl < A, we
have

[u/(e -iu - 1)] +[v/(e iV -1)] = (-1/2)(u +v) +u2B(u) - v2B(v),

where IB(u)1 < 1, IB(v)1 < 1.

Proof It is an elementary fact [6, pp. 117-118] not requiring for its
proof any knowledge of differentiable functions of a complex variable, that
for some r > 0 and some numbers Bo, Bl' B2 , ••• (Bernoulli's numbers),

00

z/(eZ
- 1) = L (Bn/n!) zn

n~O

whenever 0 < Izi < r,
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where Bo= 1, B I = -1/2, B2= 1/16, and B2n +1= 0 for n = 1, 2, .... Thus, if
0< lui <r, 0< Ivl <r, then

[u/(e -;u - 1)] + [v/(eiv - 1)] = i { [ - iu/(e ~;u - 1)J- [iv/(eiv - 1)] }

= (-1/2)(u + v) + u2B(u) - v2B(v),

where
00

B(z)= L (-l)n+li[B2n +2/(2n+2)!]z2n,
n=O

which implies the lemma.

10

IB(O)I = 1/12 < 1

Proof of (11). Let e > O. We repeat the third sentence of Section 8 ("We
show: ...") with (22) replaced by

I
f r~1 (" e-i'Pf(rei'P)dqJdr- L !'(r(s)ei'P(S»)(bs-as)(ds-Cs)!<e. (29)

R] 0 sEa

Set

M = max{ If(z)l: R I ~ Izl ~ R}, e2 = eRi/[16n(M + l)(R - RdJ,

e3 = R I e/{8n(R - Rd[(2n + 1) R - R I ]};

A. is as in Lemma 2, j1 > 0 is such that

whenever R I = ro < r l .,. < r n = R,

max{rj - rj_l: 1~j~n} < j1;

p > 0 is such that (cf. Lemma 1) if (28), then for every r E [R I> R J,

If" f(rei'P)(rei'P)~1 dqJ- i f(re;a;k)(reia;k)~I(qJk-qJk~dl
o k~1

< e/[8(R - Rd];

and rt,(r, qJ) is as in (26).

(30)

(31 )

(32)
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Given P = (r, qJ) E S, let
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b,,(P)=b,(r, qJ)=min(e2' A., J1., P, '1'3(r, qJ)j(R+ 1». (33)

With this definition, let a and points P(s) be as in the third sentence of
Section 8. We prove (29).

Let the vertical sides of the elements of a, extended, be the lines

j= 0,1, ..., n,

where

Let 1~ j ~ n and consider the rectangle

Let its horizontal partitions, inherited from a, be segments of the lines

{fl = (flU) {fl = (flU)
't" 't'l, ... , 't' 'rIlJ '

where

Let 1~ k ~ J1.j. There is a unique s = Sjk E a of the form

{ (r, qJ): r' < r < r lf
, qJ JI~ 1 < qJ < qJ JI)}

intersecting aj and, clearly, by (20), (33),

(34 )

Consider the corresponding point P(s)=(r(s),qJ(s». By (20), (33), for
p = k - 1, k, we have

Ir/q>yl
- r(s) eiq>(s)1 = Irj(eiq>~j) - eiq>(S» + (rj - r(s» eiq>(s)1

~ RlqJ:,n- qJ(s)1 + r lf
- r' ~ R(qJJll - qJJI~ d + r lf

- r'

< (R + 1) (j,(P(s» ~ '1'3(r(s), qJ(s»

and hence, by (26), (21), and (30), we get

640/57/2-2
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If(rjei'P~jl) - f(r(s) ei'P(S») - f'«r(s) ei'P(S»)[rjei'P~j)- r(s) ei'P(S)]!

~ e3Irjei'P~j) - r(s) ei'P(S)1 ~ e3[R(qJlfl- qJl!~d +r" - r']

= e3[R + (r" - r')(qJl!) - qJl!~ I) -1](qJl!) - qJl!~ I)

= e3[R + (R - Rd(2n) -I ](qJl!) - qJl!~ d

= R Ie[16n2(R - R I)] -I(qJl!) - qJl!~ I)'

Therefore

f
"lJ) " lJ) " () "(j) " (j)

1 (r/'Pk ) - f(rje''Pk- 1) - rj"(r(s) e''P S )(e''Pk - e''Pk-I)1

~ R Ie[8n2(R - R 1)] -1(qJl!) - qJl!~ I)'

For k = 1, 2, ..., J.lj' set

l/J l!) = (qJ l!) - qJ l!~ d/[ei'PV1
- ei'PV~ 1]

so that

Irj-Il/Jl!)[f(rjei'PV») - f(rjei'Plj~t)] - f'(r(Sjk) ei'P(sjkl (qJl!) - qJl!~ dl

< e[16n(R - R I)] -1(qJl!) - qJl!~ d

by (34), as

" " . n
I(y - x)/(e'Y - e'X)1 = [(y - x)/2]/sm[(y - x)/2] <"2

if 0 < y - x < n; x, y real.

Thus, setting l/J~) = l/J~), we have:

I
Ilj - I Ilj I

rj- I k~O (l/Jl!) -l/Jl!l d f(rjei'PV)) - k~ I f'(r(sjd ei'P(Sjk))( qJl!) - qJl!~ d

= II rj-Il/Jl!)[f(rjei'PV») - f(rjei'PF~,)] - f'(r(sjd ei'P(Sjk))(qJl!) - qJl!~ dl
k=1

For k = 0, 1, ..., J.lj - 1 (with qJ~)1 = qJ~~1- 2n), by Lemma 2 and (34),

( ") ( ") " (j) { ( ") ( ") "( (j) (j»)l/J f -l/J f+ 1= -e-''Pk [(qJf - qJf- d/(e-' 'Pk -'Pk-I - 1)]

+ [(qJPlI - qJl!»/(ei('PVlt - 'PV I
) - I)]}

= - e-i'PV
I
[( -1/2)(qJl!L - qJl!~ d

+ (qJl!) - qJl!~ d2 111 - (qJl!L - qJl!)f 112],
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where IPII < 1, IP21 < 1. Hence, using (30) and (33), we obtain

1']

+ (2rj)-1 L e-i'l'V)f(rjei'l'V))(cpl!)-cpl!~d
k=1

1']

- L f'(r(Sjk)ei'l'(s]kl)(cpl!)-cpl!~d

k=1

133

I'j-I

< e[8(R - Rd] -I +Ri l L Me2[(CPl!) - cpl!~ d + (cpl!L - cpl!»)]
k=O

As cpl!) - cpl!~ 1< p, k = 1, 2, ,." nj, we have by (32):

Thus
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Therefore

OVED SHISHA

By (34) and (31),

and consequently
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